Q1.

(a) The diagram shows a car travelling at a speed of $12 \mathrm{~m} / \mathrm{s}$ along a straight road.

(i) Calculate the momentum of the car.

Mass of the car $=900 \mathrm{~kg}$
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Momentum = \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(ii) Momentum has direction.

Draw an arrow on the diagram to show the direction of the car's momentum.
(b) The car stops at a set of traffic lights.

How much momentum does the car have when it is stopped at the traffic lights?
\qquad
Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

Q2.
The picture shows luggage which has been loaded onto a conveyor belt.

Each piece of luggage has a different mass.
Mass of $\mathbf{A}=22 \mathrm{~kg}$ mass of $\mathbf{B}=12 \mathrm{~kg} \quad$ mass of $\mathbf{C}=15 \mathrm{~kg}$
(a) (i) What is the momentum of the luggage before the conveyor belt starts to move?

Give a reason for your answer.
\qquad
\qquad
(ii) When the conveyor belt is switched on the luggage moves with a constant speed. Which piece of luggage A, B or \mathbf{C} has the most momentum?

Give a reason for your answer.
\qquad
\qquad
(iii) At one point the conveyor belt turns left. The luggage on the belt continues to move at a constant speed.

Does the momentum of the luggage change as it turns left with the conveyor belt?

Give a reason for your answer.
(b) Draw a circle around the unit which can be used to measure momentum.
$\begin{array}{lll}\mathrm{J} / \mathrm{s} & \mathrm{kg} \mathrm{m} / \mathrm{s} & \mathrm{Nm}\end{array}$

Q3.

(a) The picture shows two teenagers riding identical skateboards.

The skateboards are moving at the same speed and the teenagers have the same mass.

Why do the teenagers not have the same momentum?
\qquad
\qquad
(b) One of the skateboards slows down and stops. The teenager then jumps off the skateboard, causing it to recoil and move in the opposite direction.

The momentum of the teenager and skateboard is conserved.
(i) What is meant by 'momentum being conserved'?
\qquad
\qquad
(ii) The teenager, of mass 55 kg , jumps off the skateboard at $0.4 \mathrm{~m} / \mathrm{s}$ causing the skateboard to recoil at $10 \mathrm{~m} / \mathrm{s}$.

Calculate the mass of the skateboard.
\qquad
\qquad
\qquad
Mass = \qquad kg
(c) Once the skateboard starts to recoil, it soon slows down and its kinetic energy decreases.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q4.
The diagram shows a child on a playground swing.

The playground surface is covered in rubber safety tiles. The tiles reduce the risk of serious injury to children who fall off the swing.

The graph gives the maximum height that a child can fall onto rubber safety tiles of different thicknesses and be unlikely to get a serious head injury.

Maximum
height of fall in metres

(i) Describe how the maximum height of fall relates to the thickness of the rubber safety tile.
\qquad
\qquad
(ii) The maximum height of any of the playground rides is 2 metres.

What tile thickness should be used in the playground?
\qquad
Give a reason for your answer.
\qquad
\qquad
(Total 3 marks)

Q5.

(a) Complete the following sentence.

The momentum of a moving object has a magnitude, in $\mathrm{kg} \mathrm{m} / \mathrm{s}$, and a \qquad .
(b) A car being driven at $9.0 \mathrm{~m} / \mathrm{s}$ collides with the back of a stationary lorry.

The car slows down and stops in 0.20 seconds. The total mass of the car and driver is 1200 kg .

Calculate the average force exerted by the lorry on the car during the collision.

Show clearly how you work out your answer.
\qquad
\qquad
Force $=$ \qquad N
(c) Within 0.04 s of the car hitting the back of the lorry, the car driver's airbag inflates. The airbag deflates when it is hit by the driver's head.

Use the idea of momentum to explain why the airbag reduces the risk of the drive sustaining a serious head injury.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
The roads were very icy. An accident was recorded by a security camera.

Car A was waiting at a road junction. Car B, travelling at $10 \mathrm{~m} / \mathrm{s}$, went into the back of car A. This reduced car B's speed to $4 \mathrm{~m} / \mathrm{s}$ and caused car \mathbf{A} to move forward.

The total mass of car A was 1200 kg and the total mass of car B was 1500 kg .
(i) Write down the equation, in words, which you need to use to calculate momentum.
\qquad
(ii) Calculate the change in momentum of car \mathbf{B} in this accident.

Show clearly how you work out your final answer and give the unit.
\qquad
\qquad
Change in momentum =
(iii) Use your knowledge of the conservation of momentum to calculate the speed, in m / s, of car \mathbf{A} when it was moved forward in this accident.

Show clearly how you work out your final answer.

Speed $=$ \qquad m / s

Mark schemes

Q1.
(a) (i) 10800
allow 1 mark for correct substitution i.e. 900×12
(ii) arrow pointing towards the left allow anywhere on the diagram or at bottom of the page
(b) zero
accept 0 / none / nothing
velocity is zero
accept speed for velocity
accept stopped / not moving
accept a calculation i.e. $900 \times 0=0$

Q2.
(a) (i) zero accept nothing speed is zero
accept not moving
(ii) A
largest mass or weight
accept heaviest luggage
do not accept largest luggage
(iii) momentum does change
accept yes
direction is changing
accept velocity is changing do not accept answers in terms of speed changing
(b) $\mathrm{kg} \mathrm{m} / \mathrm{s}$

Q3.
(a) (moving in) different / opposite directions accept one has positive momentum the other negative momentum accept they have different velocities
(b) (i) momentum before = momentum after
or
(total) momentum stays the same accept no momentum is lost accept no momentum is gained
(ii) 2.2
allow 1 mark for calculation of teenagers' momentum as 22 (kgm/s) and
allow 1 mark for correct statement, eg momentum before $=$ momentum after
or
allow 2 marks for a numerical expression of above, eg $55 \times 0.4=m \times 10$ or $0=(55 \times 0.4)+(m \times(-10))$
(c) any two from:

- work is done
- (against) friction any reference to increasing friction negates this marking point
- (transforming) (kinetic) energy into heat

Q4.
(i) the thicker the tile, the greater the(fall) height accept the higher (the fall) the thicker the tile accept there is a positive correlation do not accept they are proportional
(ii) $60(\mathrm{~mm})$
accept any number or range between 60 and 85 inclusive if units are given must match range
(minimum thickness) needed to reduce risk of injury
reason must match thickness choice do not accept to keep child safe
accept an answer in terms of - the thicker the tile, the less
chance there is of a serious injury if the answer given is greater than 60
accept answers in terms of use of graph e.g. the graph shows that for a 2 m fall a thickness of 60 mm is needed minimum level answer' the graph shows that's what's needed' accept only if 60 is the answer

Q5.
(a) direction
(b) 54000
allow 1 mark for calculating and identifying momentum as 10 800
or
allow 1 mark for correct substitution into second equation
ie $\frac{1200 \times 9}{0.2}$
(c) increases the time taken (for head) to stop
accept increases impact time
do not accept reference to slowing down time unless qualified
decreases rate of change in momentum
accept reduces acceleration / deceleration
accept increases the time taken to reduce momentum to zero is worth 2 marks
reduces momentum is insufficient
reduces the force (on the head)

Q6.
(i) momentum (change in) $=$ mass \times velocity (change in)
accept ... speed
(ii) 9000
1500×6 for 1 mark but not from incorrect equation
kilogram metre(s) per second or $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(iii) either $7.5(\mathrm{~m} / \mathrm{s})$
or change in momentum of car B change in momentum of car A (1) $9000=1200 \times v(1)$
or $v=9000 \div 1200(1)$
or error carried forward from part (ii)
examples
5 (m / s) if 6000 offered in (ii) (3)
$12.5(\mathrm{~m} / \mathrm{s})$ if 15000 offered in (ii)
(3)

