1. In a sport called far-leaping, an athlete uses a long pole to cross a river.

Figure 1 shows an athlete far-leaping.
Figure 1

Figure 2 shows the athlete in different stages of far-leaping.
Figure 2

(a) Complete the sentence.

Choose answers from the box.

chemical	nuclear		kinetic
	elastic potential	gravitational potential	

Between positions \mathbf{A} and \mathbf{B} the athlete speeds up. There is
an increase in the athlete's \qquad energy and
a decrease in the athlete's \qquad store of energy.
(b) Between positions \mathbf{B} and \mathbf{C} the athlete jumps to the pole and climbs up it.

Which statement describes a change in the athlete's energy between positions \mathbf{B} and \mathbf{C} ?
Tick (\checkmark) one box.

Elastic potential energy decreases.

Elastic potential energy increases.

Gravitational potential energy decreases.

Gravitational potential energy increases.

(c) The pole falls over from position \mathbf{C}. The athlete lets go of the pole and lands at position \mathbf{D}. The change in height of the athlete between positions \mathbf{C} and \mathbf{D} is 3.0 m .
mass of athlete $=50 \mathrm{~kg}$
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the change in gravitational potential energy of the athlete between positions \mathbf{C} and \mathbf{D}.

Use the equation:
$\begin{gathered}\text { change in gravitational } \\ \text { potential energy }\end{gathered}=$ mass \times gravitational field strength \times change in height
\qquad
\qquad

Change in gravitational potential energy $=$ \qquad J
(d) The kinetic energy of the athlete at position \mathbf{D} is 1600 J .
mass of athlete $=50 \mathrm{~kg}$
Calculate the speed of the athlete at position \mathbf{D}.
Use the equation:

$$
\text { speed }=\sqrt{\frac{2 \times \text { kinetic energy }}{\text { mass }}}
$$

Choose the unit from the box.

m / s	J / kg
J / s	

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Speed }=\ldots \quad \text { Unit }
$$

Figure 2 is repeated below.
Figure 2

(e) At positions \mathbf{A} and \mathbf{E}, the athlete is standing still.

Why does the athlete have less energy in position \mathbf{E} than in position \mathbf{A} ?
Tick (\checkmark) one box.

Energy has been transferred from the athlete to
the air.

The air temperature has decreased.

The height of the athlete above the water has increased.

(f) Athletes have a large power output when they are far-leaping.

What is meant by the power of an athlete?
Tick (\checkmark) one box.

The rate at which the athlete transfers energy.

The size of the maximum force exerted by the athlete.

The total energy transferred by the athlete. \square
(g) A second athlete crossed the same river by far-leaping.

The second athlete had less power than the first athlete when running between position \mathbf{A} and position B.

Complete the sentences.
Choose answers from the box.
Each answer may be used once, more than once or not at all.

less than	the same as	more than

Two factors that could explain why the second athlete had less power than the first athlete are:

1. The time taken by the second athlete to run between position \mathbf{A} and position \mathbf{B} was
\qquad the first athlete.
2. The work done by the second athlete was \qquad the first athlete.
3. The photograph below shows a sailing boat crossing an ocean.

There is a wind turbine on the boat.
(a) The wind turbine generates electricity to charge a battery on the boat.

Name one other renewable energy resource that could be used on the boat to generate electricity.
(b) The boat also has a generator that burns a fossil fuel.

The battery can be charged by either the wind turbine or the generator.
Give two reasons why this is useful.
1 \qquad
\qquad
2 \qquad
\qquad
(c) Explain one environmental impact of using fossil fuels to generate electricity.
\qquad
\qquad
\qquad
\qquad
(d) The kinetic energy of the boat is 81 kJ .
mass of boat $=8000 \mathrm{~kg}$
Calculate the speed of the boat.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Speed $=$ \qquad m / s
(e) As the boat passes over a wave, the gravitational potential energy of the boat increases by 19600 J .
mass of boat $=8000 \mathrm{~kg}$
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the change in height of the centre of mass of the boat as it passes over the wave.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Change in height = \qquad m
3. Figure 1 shows a mobile phone with its battery removed.

Figure 1

A student measured the potential difference across the battery and then put the battery into the phone.
(a) What is the equation linking current (Λ, potential difference (V) and resistance (R) ?

Tick (\checkmark) one box.

$$
I=V R
$$

$$
R=I V
$$

$V=I R$

$$
V=I_{2} R
$$

(b) The current in the electronic circuit in the mobile phone was 0.12 A .

The potential difference across the battery was 3.9 V .
Calculate the resistance of the electronic circuit in the mobile phone.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω
(c) Write down the equation which links energy (E), power (P) and time (t).
\qquad
(d) The battery was fully charged when it was put into the mobile phone.

The battery discharged when the mobile phone was switched on.
The average power output of the battery as it discharged was 0.46 watts.
The time taken to fully discharge the battery was 2500 minutes.
Calculate the energy transferred by the battery.
\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred $=$

The mobile phone includes a sensor to monitor the temperature of the battery.
Figure 2 shows the circuit symbol for a component used in the sensor.
Figure 2

(e) What component does the circuit symbol shown in Figure 2 represent?
\qquad
(f) The temperature of the component in Figure $\mathbf{2}$ increases.

The potential difference across the component remains constant.
Explain what happens to the current in the component.
\qquad
\qquad
\qquad
\qquad
4. A student determined the density of a cube made of bronze.

The student used a balance to measure the mass of the bronze cube.
Figure 1 shows the balance before the cube was added.
Figure 1

(a) What type of error is shown on the balance?
\qquad
(b) How could the student get a correct value for the mass of the cube from the balance?
\qquad
\qquad
(c) The student measured the length of the bronze cube using Vernier callipers and then using a micrometer.

Table 1 shows the results.

Table 1

Equipment	Length in $\mathbf{~ m m}$
Vernier callipers	20.1
Micrometer	20.14

Complete the sentence.
The results in Table 1 show that the Vernier callipers and the micrometer have a different \qquad .

The student wanted to determine the density of a bronze coin.
The student had several identical coins.
The volume of each coin was very small.
(d) The student added water to a measuring cylinder.

Figure 2 shows the student reading the volume of water in the measuring cylinder.
Figure 2

Give two changes the student should make to increase the accuracy of the volume measurement.

1 \qquad
\qquad

2 \qquad
\qquad
(e) Describe how the student could use a displacement method to determine an accurate value for the volume of a single coin.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Old penny coins were made from a disc of bronze.

New penny coins are made from a disc of a different metal.
Figure 3 shows a disc of metal.
Figure 3

Table 2 shows information about the discs used to make each coin.

Table 2

Disc	Mass in \mathbf{g}	Density in $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$	Thickness in $\mathbf{c m}$
Old penny	3.6	8.9	0.16
New penny	3.6	\mathbf{X}	0.17

The discs used to make the old and the new coins have the same cross-sectional area.
Calculate value \mathbf{X} in Table 2.
Give your answer to 2 significant figures.
The volume of a disc can be calculated using the equation:
volume of a disc $=$ cross-sectional area \times thickness
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $\mathrm{g} / \mathrm{cm}^{3}$
5. A scientist had a balloon which was filled with air.
(a) Which statement describes how air particles move?

Tick (\checkmark) one box.

At random speeds in random directions

At random speeds in the same direction

At the same speed in random directions
\square
\square
\square

At the same speed in the same direction

The temperature of the air was $19^{\circ} \mathrm{C}$
The scientist dipped the balloon into liquid nitrogen.
The temperature of the liquid nitrogen was $-196{ }^{\circ} \mathrm{C}$
(b) Which thermometer could be used to measure the temperature of the liquid nitrogen?

Tick (\checkmark) one box.

(c) The scientist wore special insulating gloves when putting the balloon into the liquid nitrogen.

Suggest why.
\qquad
\qquad
(d) When the balloon was put into liquid nitrogen the temperature of the air in the balloon decreased.

Complete the sentences.
Choose answers from the box.
Each answer may be used once, more than once or not at all.

decreased	stayed the same	increased

As the air in the balloon cooled down, the speed of the particles
\qquad . This is because the kinetic energy of the
particles \qquad .
(e) The air in the balloon had a mass of 0.00320 kg

The temperature of the air in the balloon decreased by $215^{\circ} \mathrm{C}$
The change in thermal energy of the air in the balloon was 860 J
Calculate the specific heat capacity of the air in the balloon.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Specific heat capacity $=$ \qquad $\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$
(f) The liquid nitrogen boiled.

What happens to the temperature of nitrogen as it boils?
Tick (\checkmark) one box.

Temperature decreases

Temperature increases

Temperature stays the same

The scientist recorded measurements to calculate the specific latent heat of vaporisation of nitrogen.
(g) What is meant by vaporisation?

Tick (\checkmark) one box.

A change of state from liquid to gas

A change of state from solid to gas

A change of state from solid to liquid

(h) The mass of nitrogen that vaporised was 0.0072 kg 1440 J of energy was transferred to the nitrogen as it vaporised.

Calculate the specific latent heat of vaporisation of nitrogen.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Specific latent heat of vaporisation = \qquad J / kg
(Total 13 marks)
6. Different radioactive isotopes emit different types of nuclear radiation.

A polonium-210 (Po) nucleus emits an alpha particle (α) and turns into a lead (Pb) nucleus.
This can be represented by the equation:

(a) What is the value of A in the equation?

Tick (\checkmark) one box.
$A=206$ \square $A=208$ \square $A=210$

$A=211$ \square
(b) What is the value of Z in the equation?

Tick ($\sqrt{ }$) one box.
$Z=80$ \square $Z=82$ \square $Z=85$ \square $Z=86$ \square
(c) A strontium-89 nucleus (Sr) emits a beta particle (β) and turns into an yttrium nucleus (Y).

This can be represented by the equation:

$$
{ }_{38}^{89} \mathrm{Sr} \longrightarrow{ }_{z}^{A} Y+\beta
$$

What are the values of A and Z in the equation?

$$
\begin{aligned}
& A= \\
& Z=
\end{aligned}
$$

(d) Gamma radiation is another type of nuclear radiation.

What does gamma radiation consist of?
Tick (\checkmark) one box.

High energy neutrons \square

Electromagnetic waves \square

Particles with no charge

Positively charged ions \square
(e) Explain the differences between the properties of alpha, beta and gamma radiations.
\qquad
7. Scientists are developing a rocket aeroplane designed to travel much faster than jet aeroplanes.
(a) The rocket aeroplane must accelerate along a runway to take off.

What would happen to the air resistance acting on the rocket aeroplane as it accelerates?
\qquad
\qquad
(b) An upward force called lift will act on the wings of the rocket aeroplane when it moves.

Complete the sentence.
Choose the answer from the box.

less than	denatured	the same as

As the rocket aeroplane starts to accelerate along the runway, the lift force on the wings will be \qquad the weight of the rocket aeroplane.
(c) During the first 14 seconds the average speed of the rocket aeroplane on the runway will be $35 \mathrm{~m} / \mathrm{s}$.

Calculate the distance that the rocket aeroplane will travel during the first 14 seconds. Use the equation:
distance travelled $=$ average speed \times time
\qquad
\qquad
\qquad
Distance travelled =__m
(d) Write down the equation which links distance (s), force (F) and work done (W).
\qquad
(e) When the rocket aeroplane travels a distance of 270 m on the runway the engines will do 54000000 J of work.

Calculate the average force exerted by the engines.
\qquad
\qquad
\qquad
\qquad
\qquad
Average force $=$ \qquad N
(f) The rocket aeroplane will fly at a greater height than a jet aeroplane.

The height that an aeroplane flies at affects the radiation dose a passenger will receive each hour.

The table below shows the speed of each aeroplane and the radiation dose a passenger will receive each hour.

Aeroplane	Speed in metres per second	Radiation dose each hour in millisieverts
Rocket aeroplane	8000	0.006
Jet aeroplane	250	0.003

Exposure to ionising radiation has risks and possible consequences.
Evaluate the risks and possible consequences of flying in a rocket aeroplane and in a jet aeroplane.

Assume the same journey is made in each aeroplane.
Use values from the table above.
\qquad
8. A student made water waves in a ripple tank.
(a) Describe how the frequency and wavelength of the water waves in the ripple tank can be measured accurately.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The student recorded values for the frequency and the wavelength of waves in the ripple tank.
Table 1 and Table 2 show the results.

Table 1

Reading	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Frequency in hertz	9.8	9.4	9.3

Table 2

Reading	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Wavelength in cm	1.7	2.2	2.1

(b) Determine the mean wave speed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mean wave speed = \qquad m / s
(c) What is the advantage of taking repeat readings and then calculating a mean?
\qquad
\qquad
(d) The speed of the wave is affected by the depth of the water in the ripple tank.

The deeper the water the faster the wave.
Explain how the depth of the water affects the wavelength of the wave if the frequency is constant.
\qquad
\qquad
\qquad
\qquad
9. A student clamped a wire between the poles of a permanent magnet.

The student investigated how the force on the wire varied with the current in the wire.
The diagram below shows the equipment used.

The top pan balance was used to determine the force on the wire.
(a) When the switch was closed the reading on the top pan balance increased.

Explain why the increased reading showed that there was an upward force on the wire.
\qquad
\qquad
\qquad
\qquad
(b) The table below shows the readings on the top pan balance with the switch open and with the switch closed.

Switch	Mass in grams
Open	252.3
Closed	254.8

Explain how the values in the table above can be used to determine the size of the force on the wire.
\qquad
\qquad
\qquad
\qquad
(c) The student varied the current in the wire and calculated the force acting on the wire. The graph below shows the results.

The length of the wire in the magnetic field was 0.125 m
Determine the magnetic flux density.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Magnetic flux density = \qquad T

1. (a) kinetic

answers must be in this order

chemical
(b) gravitational potential energy increases
(c) $E_{p}=50 \times 9.8 \times 3.0$
$E_{p}=1470(J)$ allow 1500 (J)
(d) speed $=\sqrt{2 \times \frac{1600}{50}}$

```
speed = 8
```

allow 8.0
m / s
(e) energy has been transferred from the athlete to the air
(f) the rate at which the athlete transfers energy
(g) more than
answers must be in this order
less than
2. (a) solar
(b) sometimes there is no wind (but the battery can still be charged using the generator) allow if the generator breaks then the turbine can still generate electricity
when there is wind less fuel is burned
allow a disadvantage of burning fossil fuel
(c) carbon dioxide
increases global warming
OR
sulfur dioxide or NOx emissions (1)
increases acid rain (1)
OR
particulates or NOx emissions (1)
can harm living organisms (1)
allow increases the greenhouse effect
(d) $81 \mathrm{~kJ}=81000 \mathrm{~J}$

$$
\begin{aligned}
81000= & 0.5 \times 8000 \times \mathrm{v}^{2} \\
& \text { allow a correct substitution using an incorrectly/not } \\
& \text { converted value of energy }
\end{aligned}
$$

$\mathrm{v}=\sqrt{\frac{81000}{0.5 \times 8000}}$
allow a correct re-arrangement using an incorrectly/not converted value of energy
(e) $19600=8000 \times 9.8 \times \Delta h$
$\Delta h=\frac{19600}{8000 \times 9.8}$
1
$\Delta \mathrm{h}=0.25 \mathrm{~m}$
3. (a) $V=I R$
(b) $3.9=0.12 \times \mathrm{R}$
$R=\frac{3.9}{0.12}$
$R=32.5(\Omega)$

$$
\text { allow } R=33(\Omega)
$$

(c) energy $=$ power \times time
or
$E=P t$
(d) time $=150000 \mathrm{~s}$
energy $=0.46 \times 150000$
allow a substitution using an incorrectly/not converted value of time
energy $=69000(\mathrm{~J})$
allow a correct calculation using an incorrectly/not converted value of time
(e) thermistor
(f) the current will increase
4. (a) zero error
(b) reset the balance to zero g
allow subtract the reading shown on the balance from the reading taken
(c) resolution

> this answer only
(d) place the measuring cylinder on a horizontal surface
view with eye in line with the level of the water allow read from the bottom of the meniscus
(e) add several coins to the measuring cylinder allow a minimum of 5 coins if a number of coins is given
measure the change in the water level in the measuring cylinder
divide by the number of coins added
(f) $\quad 8.9=\frac{3.6}{\text { area } \times 0.16}$

$$
\text { allow } 8.9=\frac{3.6}{\text { volume }}
$$

area $=\frac{3.6}{8.9 \times 0.16}$
allow area $=2.5(28 \ldots)\left(c r^{2}\right)$
density $=\frac{3.6}{2.528 \times 0.17}$
allow $\frac{3.6}{\text { their calculated area } \times 0.17}$
density $=8.37 \ldots\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
allow a correct calculation using their calculated area

$$
\begin{aligned}
\text { density }= & 8.4 \mathrm{~g} / \mathrm{cm}^{3} \\
& \text { this mark can only be scored for a correct rounding of a } \\
& \text { value of density calculated using correct equations }
\end{aligned}
$$

5. (a) at random speeds in random directions
(b) 3rd thermometer ticked

(c) to prevent (frost/cold) burns

> allow to prevent frostbite
or
to prevent injury from the cold nitrogen
(d) decreased
decreased
(e) $860=0.00320 \times \mathrm{c} \times 215$

$$
c=\frac{860}{0.00320 \times 215}
$$

$\mathrm{C}=1250\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)$
1
(f) temperature stays the same
(g) a change of state from liquid to gas
(h) $1440=0.0072 \times \mathrm{L}$
$L=\frac{1440}{0.0072}$
$\mathrm{L}=200000(\mathrm{~J} / \mathrm{kg})$
6. (a) $A=206$
(b) $Z=82$
(c)
numbers must be in this order
89

39
(d) electromagnetic waves
(e) Level 3: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.

Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

alpha radiation

- an alpha particle is the same as a helium nucleus
- alpha is the least penetrating
- alpha is stopped by paper or skin
- alpha has the shortest range in air
- alpha will travel a few cm in air
- because alpha is most ionising
- because alpha has a charge of +2

beta radiation

- a beta particle is an electron (emitted from the nucleus)
- beta penetrates less than gamma and more than alpha
- beta is stopped by a thin sheet of aluminium
- beta has a shorter range than gamma
- beta will travel up to 1 m in air
- because beta is more ionising that gamma and less ionising than alpha
- because beta has a charge of -1

gamma radiation

- gamma radiation is an electromagnetic wave
- gamma is the most penetrating
- gamma is reduced/stopped by several cm of lead or thick concrete
- gamma has the largest range in air
- gamma will travel very large distances in air
- because gamma is least ionising
- because is uncharged
to access level 3 the answer should compare alpha, beta and gamma radiation and provide some explanation of their properties

7. (a) (air resistance) increases
(b) less than
(c) $\mathrm{s}=35 \times 14$

$$
\mathrm{s}=490(\mathrm{~m})
$$

(d) work done $=$ force \times distance

Or
$W=F s$
(e) $54000000=\mathrm{F} \times 270$
$F=\frac{54000000}{270}$
$F=200000(N)$
(f) Level 2: Scientifically relevant features are identified; the way(s) in which they are similar/different is made clear and (where appropriate) the magnitude of the similarity/difference is noted.

Level 1: Relevant features are identified and differences noted.

No relevant content

Indicative content

- distance travelled is the same for each aeroplane
- time in the air is much greater for jet aeroplane
- speed of rocket plane is much greater
- speed of rocket plane is 32 times greater
- radiation dose each hour greater for rocket aeroplane
- radiation dose each hour is 2 times greater for rocket aeroplane
- overall radiation dose is less for rocket plane
- dose in jet aeroplane is 16 times greater overall
- much higher risk in jet aeroplane
- increased risk of skin cancer
- increased risk of gene mutation and cancer

To access level 2, there must be a relevant calculation.
8. (a) Level 2: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 1: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

No relevant content

Indicative content

Wavelength

- place a metre rule at the side of the screen perpendicular to the wave fronts
- use the metre rule to measure the length of the screen
- take a photograph of the shadow on the screen
- count the number of complete waves on the screen
- determine the wavelength by dividing the length of the by the number of complete waves
or
- place a metre rule at the side of the screen perpendicular to the wave fronts
- take a photograph of the shadow on the screen
- use the metre rule to measure the distance between two wave front

Frequency

- count the number of waves that pass a given point
- time how long it takes for the waves to pass that point using a stop clock
- frequency is number of waves divided by time taken
or
- put a stop clock on the screen
- use a digital video camera to record the waves passing a point
- replay in slow motion and count the number of waves passing a point in 1 second

There must be a description of both frequency and wavelength measurement to access level 2
(b) mean f $=9.5 \mathrm{~Hz}$
mean $\lambda=0.020 \mathrm{~m}$
$v=9.5 \times 0.020$
allow a correct substitution of an incorrect value of mean frequency and/or
wavelength
$\mathrm{v}=0.19(\mathrm{~m} / \mathrm{s})$
allow a correct calculation using an incorrect value of mean frequency and/or wavelength
or
$\mathrm{v}=9.8 \times 0.017$
and
$\mathrm{v}=9.4 \times 0.022$
and
$\mathrm{v}=9.3 \times 0.021(2)$
$v=\frac{(1.67+2.07+1.95)}{3}$
$\mathrm{v}=0.19(\mathrm{~m} / \mathrm{s})(1)$
allow a maximum of 2 marks if a single pair of values is used
(c) reduces the effect of random errors
allow anomalous readings can be discarded before calculating a mean
(d) deeper water means longer wavelength
because
v increases and f is constant allow for a fixed frequency period is constant
9. (a) the downward force on the balance increased
allow when there is a current in the wire there is a magnetic field around the wire (which causes a magnetic force)
therefore the wire must experience an equal and opposite force (which is upwards)
(b) calculate the difference between the two mass readings
allow $254.8-252.3=2.5$
convert to kg and multiply by gravitational field strength

$$
\text { allow }(2.5 / 1000) \times 9.8=0.02375(N)
$$

(c) gradient $=\frac{(0.0210-0.0)}{(0.70-0.02)}$
gradient $=0.031$
allow answer correctly given to any number of significant figures
$0.031=B \times 0.125$
allow correct substitution using correctly calculated value given to any number of significant figures
$B=0.25 \mathrm{~T}$
allow answer correctly given to any number of significant figures
any rounding must be correct for subsequent marks to be awarded.
max 2 marks if a pair of readings from the graph are used instead of gradient calculation

